翻訳と辞書
Words near each other
・ Benjamin's Park
・ Benjamin, Duke of Soubise
・ Benjamin, Texas
・ Benjamin, Utah
・ Benjamin-Gunnar Cohrs
・ Benjamin-Henri Le Moine
・ Benjamin-Hyacinthe-Martin Cherrier
・ Benjaminas
・ Benjaminas Jakševičius
・ Benjaminas Viluckis
・ Benjaminas Zelkevičius
・ Benjaminiola
・ Benjaminiomyces
・ Benjaminville Friends Meeting House and Burial Ground
・ Benjaminville, Illinois
Benjamin–Bona–Mahony equation
・ Benjamin–Ono equation
・ Benjamín Aceval
・ Benjamín Alvarado
・ Benjamín Arellano Félix
・ Benjamín Ayala Velázquez
・ Benjamín Benítez
・ Benjamín Boza
・ Benjamín Brea
・ Benjamín Callejas
・ Benjamín Cardona
・ Benjamín Carrión
・ Benjamín Carrión Palace
・ Benjamín Castaneda
・ Benjamín Castillo Valdez


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Benjamin–Bona–Mahony equation : ウィキペディア英語版
Benjamin–Bona–Mahony equation

The Benjamin–Bona–Mahony equation (or BBM equation) – also known as the regularized long-wave equation (RLWE) – is the partial differential equation
:u_t+u_x+uu_x-u_=0.\,
This equation was studied in as an improvement of the Korteweg–de Vries equation (KdV equation) for modeling long surface gravity waves of small amplitude – propagating uni-directionally in 1+1 dimensions. They show the stability and uniqueness of solutions to the BBM equation. This contrasts with the KdV equation, which is unstable in its high wavenumber components. Further, while the KdV equation has an infinite number of integrals of motion, the BBM equation only has three.
Before, in 1966, this equation was introduced by Peregrine, in the study of undular bores.
A generalized ''n''-dimensional version is given by
:u_t-\nabla^2u_t+\operatorname\,\varphi(u)=0.\,
where \varphi is a sufficiently smooth function from \mathbb R to \mathbb R^n. proved global existence of a solution in all dimensions.
==Solitary wave solution==

The BBM equation possesses solitary wave solutions of the form:〔
:u = 3 \frac \operatorname^2 \frac12 \left( cx - \frac + \delta \right),
where sech is the hyperbolic secant function and \delta is a phase shift (by an initial horizontal displacement). For |c|<1, the solitary waves have a positive crest elevation and travel in the positive x-direction with velocity 1/(1-c^2). These solitary waves are not solitons, i.e. after interaction with other solitary waves, an oscillatory tail is generated and the solitary waves have changed.〔〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Benjamin–Bona–Mahony equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.